IDO inhibits T-cell function through suppressing Vav1 expression and activation.
نویسندگان
چکیده
PURPOSE Indoleamine 2,3-dioxygenase (IDO), a tryptophan catabolic enzyme, plays an important role in immune escape through suppressing T-cell function. Since Vav1 signaling pathway regulates T cell homeostasis, this study was designed to test the hypothesis that IDO induces T-cell immunosuppression through inhibiting Vav1 signaling. RESULTS We found that IDO produced by IDO stably expressing CHO cells significantly inhibited interleukin (IL)-2 expression and proliferative response in T cells and increased apoptosis of T cells. IDO suppressed Vav1 mRNA and protein production in T cells. Furthermore, IDO inhibited TCR activation-induced Vav1 phosphorylation, which represents Vav1's activation state in T cells. These effects on T-cells induced by co-culture of CHO/IDO with T cells were attenuated by 1-MT. MATERIALS AND METHODS Chinese hamster ovary (CHO) cells were stably transfected with human IDO (CHO/IDO). CD3(+) T cells were isolated from human peripheral blood monouclear cells. After co-culture of CHO/IDO cells with T cells in the presence or absence of an anti-CD3 antibody to activate T cell receptor (TCR) and/or 1-methyl-L-tryptophan (1-MT) to inhibit IDO activity, T cell proliferation and apoptosis were determined. T cell total RNA and cellular protein samples were isolated for detecting Vav1 gene and protein expression and activation state. CONCLUSIONS The inhibitory effects of IDO on T cell immune responses may be through downregulation of Vav1 protein expression and activation. These studies provide insight into understanding the mechanisms of immune escape induced by IDO and therapeutic application of IDO inhibitors for cancer treatment.
منابع مشابه
Indoleamine 2,3-Dioxygenase and Immunological Tolerance during Pregnancy
Indoleamine 2,3-dioxygenase (IDO), an enzyme involved in the catabolism of tryptophan, is expressed by a variety of cells and tissues such as macrophages, dendritic cells, cells of the endocrine system and by the placenta. IFN- γ is the main inducer of this enzyme. IDO acts as an important defense mechanism of innate immunity against pathogens. It also has tumor suppressive activity and prolong...
متن کاملVav1 as a Central Regulator of Invadopodia Assembly
Invadopodia are protrusive structures used by tumor cells for degradation of the extracellular matrix to promote invasion [1]. Invadopodia formation and function are regulated by cytoskeletal-remodeling pathways and the oncogenic kinase Src. The guanine nucleotide exchange factor Vav1, which is an activator of Rho family GTPases, is ectopically expressed in many pancreatic cancers, where it pro...
متن کاملMatrine inhibits diethylnitrosamine-induced HCC proliferation in rats through inducing apoptosis via p53, Bax-dependent caspase-3 activation pathway and down-regulating MLCK overexpression
The proliferation of hepatocellular carcinoma (HCC) cells is one of the leading causes of liver cancer mortality in humans. The inhibiting effects of matrine on HCC cell proliferation have been studied, but the mechanism of that inhibition has not been fully elucidated. Since, apoptosis plays an important role in HCC cell proliferation. We examined the apoptosis-inducing effect of matrine on tu...
متن کاملMatrine inhibits diethylnitrosamine-induced HCC proliferation in rats through inducing apoptosis via p53, Bax-dependent caspase-3 activation pathway and down-regulating MLCK overexpression
The proliferation of hepatocellular carcinoma (HCC) cells is one of the leading causes of liver cancer mortality in humans. The inhibiting effects of matrine on HCC cell proliferation have been studied, but the mechanism of that inhibition has not been fully elucidated. Since, apoptosis plays an important role in HCC cell proliferation. We examined the apoptosis-inducing effect of matrine on tu...
متن کاملMultiple Myeloma Bone Marrow Mesenchymal Stromal Cells Inhibit CD8+ T Cell Function in a Process that May Implicate Fibroblast Activation Protein α
Background: Multiple myeloma (MM) is a malignant plasma cell proliferative disorder with limited immunotherapy treatment because of T cell dysfunction. Objective: To investigate the immunomodulatory function of bone marrow mesenchymal stromal cells (MM-BMSCs) on CD8+ T cells. Methods: Proliferation and cytotoxicity were detected by c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cancer biology & therapy
دوره 8 14 شماره
صفحات -
تاریخ انتشار 2009